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Spins swing like pendulums do: an exact classical model for
TOCSY transfer in systems of three isotropically coupled spins 1/2
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Abstract

An exact correspondence is found between the quantum dynamics of three isotropically coupled spins 1/2 and the dynamics of

three coupled classical oscillators. This correspondence is demonstrated by experimentally simulating the polarization transfer

functions of an isotropic mixing TOCSY experiment with a set of mechanically coupled pendulums. The extend to which the exact

correspondence holds is analyzed and it is shown that it breaks down for systems consisting of more than three coupled spins.

� 2003 Elsevier Science (USA). All rights reserved.
1. Introduction

Quantum phenomena are often highly counterintui-

tive and classical analogues are known only for a small

number of simple quantum systems. A famous example

is the Feynman–Vernon–Helwarth theorem which
states that the behavior of any quantum mechanical

two-level system can be modeled by classical torque

equations, i.e., there is a one-to-one correspondence

between the time evolution of the two-level system and

the dynamics of a spinning top [1]. In the context of

NMR, a single spin 1/2 in an external magnetic field is

a prototype example, where the torque equations are

reflected in the well-known Bloch equations [2]. The
Feynman–Vernon–Helwarth theorem has also helped

in the design and interpretation of experiments in other

spectroscopic fields, such as laser spectroscopy [3].

Here, we present a classical model that quantitatively

reflects the coherent evolution in an ensemble of up to

three coupled spins 1/2 under isotropic mixing condi-

tions with arbitrary coupling constants and coupling

topology.
The TOCSY experiment based on isotropic mixing

forms one of the most efficient methods to transfer
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coherence or polarization between coupled homonuclear

spins in high-resolution NMR [4,5]. Effective isotropic

mixing conditions can also be created in heteronuclear

spin systems by a number of well-known pulse sequences

[5–7]. Simulating the transfer dynamics is important in

practice because it enables spectroscopists to determine
the optimal duration of isotropic mixing periods in

NMR experiments [5,8,9].

In their seminal paper on isotropic mixing experi-

ments, Braunschweiler and Ernst stated that for iso-

tropically coupled spins ‘‘the situation is to some extent

analogous to a network of coupled mechanical oscilla-

tors where normal modes also involve collective motions

of several oscillators’’ [4]. However, so far it was not
clear to what extend this analogy holds if coherence

transfer under isotropic mixing and the transfer of en-

ergy in coupled mechanical oscillators are compared

quantitatively. Here, we demonstrate that a system of

three coupled mechanical oscillators is not only a

qualitative analogy but in fact quantitatively reflects all

aspects of polarization and coherence transfer for three

isotropically coupled spins 1/2. Hence, a system of three
coupled pendulums can faithfully simulate the quantum

dynamics of TOCSY transfer. However, for more than

three isotropically coupled spins the exact correspon-

dence breaks down and in this case coupled mechanical

oscillators form only a rather qualitative analogy of

TOCSY transfer.
erved.
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Fig. 1. Schematic representation of three coupled harmonic oscillators

with spring constants j and ckl.
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2. Theory

We consider the evolution of an ensemble of three

coupled spins 1/2 under an isotropic mixing Hamilto-

nian of the form

Hiso ¼
X
k<l

2pJklfIkxIlx þ IkyIly þ IkzIlzg ð1Þ

with the coupling constants Jkl between spins k and l.
For three spins 1/2, there are only three distinct energy

levels of which two have a twofold and one has a
fourfold degeneracy [5,10].

Under the action of an isotropic mixing Hamiltonian,

the initial polarization of a given spin is transferred

throughout a coupling network in a coherent way [4,5].

For an initial spin density operator

qð0Þ ¼ Ikz ð2Þ

the Liouville–von Neumann equation

dq
dt

¼ �i½Hiso; q� ð3Þ

leads to the following set of coupled differential equa-

tions for the expectation values of the nine orthogonal

operators I1z, I2z, I3z, ðI1yI2x � I1xI2yÞ, ðI1yI3x � I1xI3yÞ,
ðI2yI3x � I2xI3yÞ, 2ðI1xI2x þ I1yI2yÞI3z, 2ðI1xI3x þ I1yI3yÞI2z,
and 2ðI2yI3x þ I2xI3yÞI1z:
_PPk ¼ 2pJklAkl þ 2pJkmAkm; ð4Þ

_AAkl ¼ pJklðPl � PkÞ þ pJkmðBkl � BlmÞ þ pJlmðBkm � BklÞ;
ð5Þ

_BBkl ¼ pJlmðAkl � AkmÞ � pJkmðAkl þ AlmÞ; ð6Þ
with fk; l;mg ¼ f1; 2; 3g and cyclic permutations there-

of. The terms

Pk ¼ hIkzi ð7Þ
represent polarizations of the individual spins, the terms

Akl ¼ hIkyIlx � IkxIlyi ð8Þ
are the expectation values of zero-quantum coherences

and the terms

Bkl ¼ h2ðIkxIlx þ IkyIlyÞImzi ð9Þ
reflect the expectation values of anti-phase zero-quan-

tum terms. Analytical solutions for these expectation

values are known for arbitrary coupling constants J12,
J13, and J23 [10].

Now we consider the equation of motion for a

classical system of three coupled mechanical oscillators

with mass m and spring constants j and ckl (c.f.

Fig. 1):

m€xxk ¼ �jxk þ cklðxl � xkÞ þ ckmðxm � xkÞ: ð10Þ
The oscillation frequencies of the uncoupled oscillators

are
m0 ¼ 1

2p

ffiffiffiffi
j
m

r
ð11Þ

and we define the mechanical coupling constants J 0
kl in

terms of the spring constants ckl as

J 0
kl ¼

ckl
4p2mm0

: ð12Þ

In the case of only two coupled mechanical oscillators,
the energy of oscillator k is transferred in a time

s0kl ¼ 1=ð2J 0
klÞ to oscillator l, in complete analogy to the

time skl ¼ 1=ð2JklÞ required for the complete polarization

transfer between two isotropically coupled spins 1/2 [4].

For given initial positions xk and velocities _xxk of three
coupled oscillators, the solution of the set of differential

equations (Eq. (10)) is tedious but straight-forward [11].

In the mechanical weak coupling limit (jJ 0kl j�jm0j) where
the oscillation frequency m0 is much larger than the

coupling constants J 0kl, it can be shown [11] that the

classical terms

P 0
k ¼

1

2m02
4p2m02x2k

�
þ _xx2k

�
; ð13Þ

A0
kl ¼

p
m0
ð _xxkxl � xk _xxlÞ; ð14Þ

B0
kl ¼ � 1

2m02
4p2m02xkxl

�
þ _xxk _xxl

�
ð15Þ

satisfy the same set of differential equations as the

quantum mechanical expectation values Pk, Akl, and Bkl

(Eqs. (4)–(6)). Hence, in this limit the mechanical system
exactly models all aspects of the three-spin system. The

polarization Pk of the kth spin corresponds to the clas-

sical quantity P 0
k, which is proportional to the sum of the

kinetic and potential energy of the kth oscillator. The

expectation values of the zero-quantum terms Akl (cf.

Eq. (8)) correspond to classical terms A0
kl and the anti-

phase zero quantum terms Bkl (cf. Eq. (9)) correspond to

the classical terms B0
kl.
3. Experiments

In order to demonstrate the striking correspondence

between isotropic mixing and coupled mechanical



Fig. 2. This figure shows the square root of theoretical (thick curves)

[10] and experimental (dots) isotropic mixing polarization transfer

functions PkðtÞ for the spin system of vinyl magnesium bromide. The

solid curves are identical to the square root of P 0
kðtÞ for a corre-

sponding system of three coupled harmonic oscillators in the me-

chanical weak coupling limit jJ 0klj � jm0j with J 012 ¼ J12 ¼ 17:6,

J 013 ¼ J13 ¼ 7:7, and J 023 ¼ J23 ¼ 22:8Hz. The thin curves correspond

to the case where the oscillation frequency m0 ¼ 300Hz is 14 times

larger than the largest coupling constant, effectively approximating the

mechanical weak coupling limit.

Fig. 3. Experimental pendulum system used to demonstrate the cor-

respondence between TOCSY transfer in isotropic mixing experiments

and the transfer of energy between coupled pendulums. Each pendu-

lum has a weight of about 6 kg. The couplings between the pendulums

are provided by U-shaped steel springs.
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oscillators, we performed isotropic mixing experiments
using the 1H spin system vinyl magnesium bromide and

also simulated the polarization transfer dynamics both

numerically and experimentally using a set of three

coupled pendulums.

Vinyl magnesium bromide was dissolved in tetra-

hydrofurane-D8 and the NMR experiments were per-

formed at a temperature of 298K in a magnetic field of

14.09 T, corresponding to a 1H NMR frequency of
600MHz. The coupling constants are J12 ¼ 17:6,
J13 ¼ 7:7, and J23 ¼ 22:8Hz. During the mixing period

of the experiments, an MLEV-17 sequence [12] with a rf

amplitude mrf ¼ cBrf=ð2pÞ of 8 kHz was applied to the

spin system. This multiple-pulse sequence had a cycle

time scyc of 2ms and in the rotating frame defined by the

spin-lock field effective isotropic mixing conditions were

created. In this frame of reference, the initial condition
qð0Þ ¼ I1z was prepared by starting at thermal equilib-

rium and applying a 90� pulse to the spin system after

selective saturation of spins 2 and 3. NMR spectra were

acquired after integer multiples of 2scyc ¼ 4ms. The

experimental polarization transfer function PkðtÞ is given
by the integrated intensity of the detected resonance of

spin k normalized by the integrated intensity of the

resonance of the excited spin at an isotropic mixing
period t ¼ 0ms. In Fig. 2 theoretical polarization

transfer functions [10] are shown (thick curves) for this

spin system.

In order to realize a corresponding set of three cou-

pled mechanical oscillators experimentally, we built a set

of three pendulums with stiff rods coupled by U-shaped

steel springs (cf. Fig. 3) [13]. Each pendulum has a

weight of about 6 kg. For small angles of deflection,
pendulums represent good approximations for har-

monic oscillators. The mechanical couplings between the

pendulums were adjusted to yield mechanical coupling

constants J 0kl ¼ sJkl with a scaling factor s ¼ 1=570.
Hence, the time evolution of the pendulum system was

570 times slower than the time evolution in the corre-

sponding spin system. In Fig. 2, the total duration of the

polarization transfer functions was 140ms for the spin
system, corresponding to 80 s for the system of coupled

pendulums. The mechanical oscillation frequency of the

uncoupled pendulums was m0 ¼ 0:56Hz which is about

14 times larger than the largest coupling constant. As

demonstrated by exact simulations of P 0
kðtÞ for three

coupled mechanical oscillators (see thin curves in Fig. 2),

this ratio between m0 and J 0kl is sufficiently large to closely

approach the dynamics of the mechanical weak coupling
limit.

Fig. 4 shows photographic traces of the oscillations of

the three coupled pendulums after the first pendulum

was selectively excited. The envelope of these traces is

proportional to the square root of P 0
kðtÞ and hence

proportional to the square root of the energy of the

pendulums. The white circles represent the correspond-
ing square root of the measured polarization of each

nuclear spin as a function of time (cf. black dots in

Fig. 2). In the NMR experiments, relaxation effects were

negligible. However, the mechanical oscillations had a

damping constant T 0 ¼ 51 s. This was taken into ac-

count in Fig. 4 by multiplying the square root of the

experimental polarization transfer amplitudes PkðtÞ by

an exponential damping function expf�t=Tg with the
damping constant T ¼ sT 0. A reasonable match is found

between the dynamics of the coupled pendulums and the



Fig. 4. Experimental comparison of the transfer dynamics of polari-

zation in the spin system of vinyl magnesium bromide and the transfer

of energy in a set of three coupled pendulums. The white curves are

photographic traces of light emitting diodes attached to the pendu-

lums. The envelope of each oscillation is proportional to the square

root of the energy of the corresponding pendulum. The circles corre-

spond to the square root of the experimental TOCSY transfer ampli-

tudes shown in Fig. 2, which were damped to match the energy

dissipation of the mechanical oscillation (see text for details).
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isotropically coupled spins. The remaining discrepancies

can be attributed to experimental imperfections and to

the fact that in the mechanical system the weak coupling

limit and the limit of small deflections from equilibrium

was only approximately fulfilled.
4. Discussion

The exact match between TOCSY transfer in isotro-

pic mixing experiments and the transfer of energy be-

tween coupled mechanical oscillators is not only of

theoretical interest but also provides a direct and intui-

tive approach to understand the complex spin dynamics

under isotropic mixing conditions. As indicated above,

this exact analogy also holds for homonuclear spin-lock
experiments with isotropic coupling terms if polariza-

tion along the spin-lock axis is considered.

The term P 0
k represents the total (i.e., kinetic and

potential) energy of pendulum k, scaled by mm02 (cf. Eq.

(13)). In the mechanical weak coupling limit, the po-

tential energy stored in the couplings between the pen-

dulums is negligible and the sum

P 0 ¼ P 0
1 þ P 0

2 þ P 0
3 ð16Þ

is constant. Hence in this analogy the well-known con-

servation of the total polarization P ¼ P1 þ P2 þ P3
under isotropic mixing conditions [4,5] corresponds to
the conservation of the total energy in the pendulum
system. It is interesting to note that in the quantum

system the conservation of the norm of the density op-

erator under unitary evolution (3) results in the con-

servation of the term

C ¼
X3

k¼1

P 2
k þ 2

X
k<l

A2
kl þ 2

X
k<l

B2
kl: ð17Þ

The corresponding quantity of the system of three

coupled mechanical oscillators is also conserved in the

mechanical weak coupling limit.
It is also interesting to ask whether the exact corre-

spondence between the spin dynamics under isotropic

mixing conditions and the dynamics of coupled me-

chanical oscillators also holds for larger spin systems. In

systems consisting of more than four coupled spins, the

polarization of individual spins can become negative in

isotropic mixing experiments [8,14]. Hence, the exact

correspondence cannot hold for more than four spins
because the energy of a given pendulum cannot become

less than zero. However, according to numerical simu-

lations, the exact correspondence already breaks down

for four coupled spins for which analytical isotropic

mixing polarization transfer functions are known [15].

One of the reasons [13] is that for more than three spins

distinct terms of the density operator such as

2ðIkxIlx þ IkyIlyÞImz and 2ðIkxIlx þ IkyIlyÞInz are created in
the course of polarization transfer. In general, the ex-

pectation values of these operators have distinct time

evolutions if m 6¼ n. However, according to Eqs. (9) and

(15) the distinct quantum mechanical expectation values

would both be represented by the same classical quan-

tity B0
kl ¼ �ð1=2m02Þð4p2m02 xkxl þ _xxk _xxlÞ. Hence, for more

than three spins, coupled mechanical oscillators only

form a rather qualitative analogy of TOCSY transfer
and cannot quantitatively simulate the dynamics under

isotropic mixing.

For classical simulations of the dynamics of three

coupled spins under isotropic mixing conditions, the

construction of a corresponding system of coupled

electrical oscillators [16] would be interesting because of

its considerably increased flexibility compared to me-

chanical pendulum systems. This would make it more
convenient to change coupling constants and to record

the desired transfer function and would allow a more

straight-forward realization of negative coupling con-

stants. Furthermore, it is an open question whether

classical analogies also exist for other effective spin–spin

coupling tensors, such as in planar [17], dipolar [18] or

cylindrical [19] mixing experiments, which in general

have markedly different transfer dynamics [5,19,20].
Finally, it should be noted that in the physics literature,

further analogies have been discussed between the dy-

namics of coupled pendulums and experiments involv-

ing quantum mechanical three-level systems, such as
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spin filter experiments [21], the stimulated resonance
Raman effect [22] and forces on three-level atoms due to

electromagnetic driving fields [23].
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